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While carbor-carbon double bondsl)( are ubiquitous the
corresponding multiple-bond chemistry of boron, the group 13
neighbor of carbon, is undevelop&d Although the isoelectronic
diboron dianions, [[BBBR;]2 (Il ), and their alkali metal salts were
predicted two decades ago to be viabke=B double-bond candi-
dates? subsequent corroborating synthetic and structural efforts have
been sparst.® Neutraldiborenes(2), based on the pardht), are
less attractive boronboron double-bond alternatives as they have
been predicted to be highly reactive, with triplet ground states and
two one-electrom-bonds’ Nevertheless, the synthesis and structural
characterization of stabilized derivatives dfl | is a fascinating
challengé:® The electron deficiency of the boron atoms IH }
invites complexation by Lewis base ligand¥ .
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The analogy between neutral ligated=B double bonded
compounds,l{/ ), and ethene derivativek) (s compelling. Indeed,
the isolobal relationship between CH and BCO groups has led to
the extensive computational development of BCO chemistityus,
OC(H)B=B(H)CO ((IV), L: = CO) and ethene are isoloFalThe
ethyne analogue, OCBBCO, has been characterized by FTIR in
matrix isolatior? Other Lewis bases, L: ilV), particularly bulky,
sterically demanding N-heterocyclic carbene (NHC) ligands, are
quite intriguing owing to their high stability and strong electron-
donor capabilitied® We now report the experimental realization
and molecular structute of R(H)B=B(H)R (R = :C{N(2,6-
Pr,CeH3)CH} ), 3. Significantly, compoun@ is the first structurally
characterizedieutraldiborene containing a8B double bond. The
nature of this B=B double bond is further delineated by density
functional theory (DFT) computations.

We employed carbenes as stabilizing ligands in organo-group
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Figure 1. Molecular structure of2 (thermal ellipsoids represent 30%
probability; hydrogen atoms on carbon omitted for clarity). Selected bond
distances (A) and angles (deg): BEB(1A) 1.828(4), B(1>-C(1) 1.577(2),
B(1)—H(1) 1.155(18), B(1)H(2) 1.147(19); B(1A)B(1)—C(1) 107.45(16),
B(1A)—B(1)—H(1) 110.7(9), B(1A)}-B(1)—H(2) 110.3(9), C(1)}B(1)—
H(1) 108.9(9), C(1}B(1)—H(2) 108.1(10), H(1)yB(1)—H(2) 111.3(13).

documented hydrogen abstraction from ethereal solifeintghe
presence of alkali metal4-16

We also prepared the carbene:borane adduct, R:8HhelB
NMR resonances o# (RBH3), 2 (R(H),B—B(H):R), and 3
(R(H)B=B(H)R) are —35.38,—31.62, and+25.30 ppm, respec-
tively. The 1B signal of4 is a quartet §g4 = 83.38 Hz), while2
displays a singlet with shoulderga/{, = 188 Hz) and3 displays a
broad singlet\{;, = 946 Hz). The'H NMR imidazole resonances
of 4, 2, and3 are 6.31, 6.21, and 6.14 ppm, respectively.

X-ray structural analysis reveals tHahas a center of symmetry
about the (H)B—B(H), core (Figure 1). The hydrides (BH) in 2,
3, and 4 were located in the difference Fourier map. The B
bond distance ir2 (1.828(4) A) compares well to that computed
for the CO-ligated analogue OC@#BB(H)-CO (1.819 Ajcand to
those in an activatedterphenyl based diborate (1.83(2)s
well as a 2,3-diboratabutadiene dianion (1.859(8}%flowever,

13 chemistry over a decade ago with the synthesis and structuralthe bond distance ir2 is longer than those in three-coordinate

determination of RM(CHs)z (R' = :C{N(Pr)C(CHs)},; M = Al,
Ga)!? Extending this work, we allowed RBRBr1,!! to react with
KCgin diethyl ether and isolated two product®; R(H),B—B(H):R,
as air-stable, colorless block crystals, &wk air-sensitive, orange-
red sheet-like crystals (eq 1).

RBBr, — % R(H),B-B(H),R + R(H)B=B(H)R (1)
1 z 2 3

The stoichiometric ratio ofl to KCg has been observed to affect
the yield of 3. A higher yield of3 (12%) was obtained with a
stoichiometric 1:KCg ratio of 1:5.4. Greater amounts of KC
decrease the yield & At a 1:KCg ratio of 1:9, only2 was isolated.
The unexpected formation @and3 appears to involve the well-
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diboron compounds (1.682(16) to 1.762(11)*AY.he boron atoms
in 2 reside in tetrahedral geometries. TheOlring of the NHC
ligand is almost perpendicular to the-B—C plane with a N(1}-
C(1)-B(1)—B(1A) torsion angle of—89.3. The B—C bond
distance in2 (1.577(2) A) is somewhat shorter than that in
(1.623(7) A), but is similar to that id (1.585(4) A).

3crystallizes in the orthorhombic space grdef2;2; (No. 19).
Each asymmetric unit contains two independent, and nearly
identical, molecules oB (Figure 2; only one molecule o3 is
shown). The B-C bond distances, 1.547(15) A (av), are marginally
shorter than those df, 2, and4. Moreover, in contrast t@, one
C3N; carbene ring 08 is nearly coplanar with the I, core (N(1)-
C(1)-B(1)—B(2) torsion angle;—13.8), while the other is stag-
gered more (N(4)C(28)-B(2)—B(1) torsion angle;—30.C°). The

10.1021/ja075932i CCC: $37.00 © 2007 American Chemical Society
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Figure 2. Molecular structure of3 (thermal ellipsoids represent 30%

probability; hydrogen atoms on carbon omitted for clarity). Selected bond

distances (A) and angles (deg): B¢B(2) 1.561(18), B(1)C(1) 1.543(15),
B(1)—H(1) 1.14(2), B(2)-C(28) 1.532(15), B(2yH(2) 1.13(2); B(2)-

B(1)—C(1) 128.3(12), B(2yB(1)—H(1) 124(4), C(1}B(1)—H(1) 107(4),
B(1)—B(2)—C(28) 126.1(12), B(1}B(2)—H(2) 128(4), C(28)}-B(2)—H(2)

105(4).
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Figure 3. Representation of the HOMO and HOMO-1 orbitals3af

three-coordinate boron atoms3radopt trigonal planar geometries.
The most notable feature & however, is the BB bond. The
B=B bond distance of 1.560(18) A (av) i8 is not only
considerably shorter than the-B distance ir2 (1.828(4) A), but
also shorter than those reported for [V&B(Mes)Phf~ (1.636-
(11) Ay* and for [Ph(MeN)BB(NMe,)PH 12~ (1.627 A (av))®
which purportedly contained a “strong# s-bond”. Furthermore,
the B=B bond distance ir8 compares well to those in dianionic
tetra(amino)diborates (1.566(9) to 1.59(1f Ahd to the computed
B=B bond lengths for the OC(HBB(H)CO ((V), L. = CO)
analogue (1.590 &y and for diborene(2),I( ) (1.498-1.515 A).
The computed BB distance of 1.45 A reported for OCBBCO, a
compound “with some triple bond character”, is shoff&iNotably,
the B-B bond distance difference of 0.27 A betwe2mnd 3 is

comparable to the corresponding difference (about 0.2 A) between

ethane and ethene. Likewise, the- C bond distance difference of

0.1 A between ethene and ethyne corresponds to the difference

betweer3 and OCBBCO (0.11 A%°c Thus, the structural details
of 3 are consistent with aBB double bond.

The nature of3 was investigated by performing B3LYP/6-
311+G** DFT computationd® on the simplified R(H)B=B(H)R
(R = :C(NHCH),) model,3a(Figure 3). BotlBaand the OC(H)B=
B(H)CO ((V), L: = CO) analogu® are planar and hav€,,
symmetry, whereas the corresponding R moietie3 ame twisted

because of the greater steric demands of the very bulky N(aryl)

ligands. The computed-BB bond lengths iBa (1.591 A) and (V)
(L: = CO) (1.590 Aye are virtually identical and are close to the
error bound of the corresponding experimental distance3 of
(1.561 (18) A). The B-C length (1.547 (15) A (av)) & also agrees
with the computed value (1.531 A) f@a. Perhaps due to reduced
steric repulsion between the ligands, the B—C bond angle in
3a(120) is less than the average valuedn126.7(12j.

The HOMO of3a (Figure 3) is mainly a B-B s-bonding orbital

involving the overlap of boron 2p orbitals, while the HOMO-1 has

mixed B—B and B—H o-bonding character. (A localized molecular

orbital (LMO)?° representation of the-BB ¢ bond is shown in the
Supporting Information). Natural bond orbital (NBO) electron
occupancies of the BB o- andz-bonding orbitals irBaare 1.943
and 1.382, respectively. The Wiberg and NLMO/NPAB bond
indices, 1.408 and 1.656, respectively, also document t+& B
double bond character Ba.

The computed boronboron Wiberg bond indexes along the
OC(H),B—B(H).CO (ethane-like), OC(H)BB(H)CO ((V), L: =
CO) (ethene-like), and OCBBCO (ethyne-like) series, 0.870, 1.308,
and 1.953, respectively, are instructive. The 1.0, 2.0, 3.0 unit bond-

order values of the hydrocarbon series are not to be expected for

the corresponding boretrboron analogues owing to the resonance
contributions of Lewis structures. Nevertheless, the single-, double-,
and triple-bond descriptions of boretoron bonds discussed here
are appropriate.

In summary, we have synthesized and characterized the first
stable neutral diborene and computationally probed the nature of
the novel boronboron double bond. Related studies on the
chemistry of boror-boron multiple bonds are ongoing.
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Note Added after ASAP Publication. After this paper was
published ASAP September 21, 2007, production errors were fixed
in the graphics showing structurd3<(IV) and eq 1. The corrected
version was published ASAP September 25, 2007.
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