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While carbon-carbon double bonds (I ) are ubiquitous the
corresponding multiple-bond chemistry of boron, the group 13
neighbor of carbon, is undeveloped.1,2 Although the isoelectronic
diboron dianions, [R2BBR2]2- (II ), and their alkali metal salts were
predicted two decades ago to be viable BdB double-bond candi-
dates,3 subsequent corroborating synthetic and structural efforts have
been sparse.4-6 Neutraldiborenes(2), based on the parent (III ), are
less attractive boron-boron double-bond alternatives as they have
been predicted to be highly reactive, with triplet ground states and
two one-electronπ-bonds.7 Nevertheless, the synthesis and structural
characterization of stabilized derivatives of (III ) is a fascinating
challenge.1,8 The electron deficiency of the boron atoms in (III )
invites complexation by Lewis base ligands (IV ).

The analogy between neutral ligated BdB double bonded
compounds, (IV ), and ethene derivatives (I ) is compelling. Indeed,
the isolobal relationship between CH and BCO groups has led to
the extensive computational development of BCO chemistry.9 Thus,
OC(H)BdB(H)CO ((IV ), L: ) CO) and ethene are isolobal.9c The
ethyne analogue, OCBBCO, has been characterized by FTIR in
matrix isolation.2 Other Lewis bases, L: in (IV ), particularly bulky,
sterically demanding N-heterocyclic carbene (NHC) ligands, are
quite intriguing owing to their high stability and strong electron-
donor capabilities.10 We now report the experimental realization
and molecular structure11 of R(H)BdB(H)R (R ) :C{N(2,6-
Pri2C6H3)CH}2), 3. Significantly, compound3 is the first structurally
characterizedneutraldiborene containing a BdB double bond. The
nature of this BdB double bond is further delineated by density
functional theory (DFT) computations.

We employed carbenes as stabilizing ligands in organo-group
13 chemistry over a decade ago with the synthesis and structural
determination of R′:M(CH3)3 (R′ ) :C{N(Pri)C(CH3)}2; M ) Al,
Ga).12 Extending this work, we allowed RBBr3, 1,11 to react with
KC8 in diethyl ether and isolated two products:2, R(H)2B-B(H)2R,
as air-stable, colorless block crystals, and3 as air-sensitive, orange-
red sheet-like crystals (eq 1).

The stoichiometric ratio of1 to KC8 has been observed to affect
the yield of 3. A higher yield of 3 (12%) was obtained with a
stoichiometric 1:KC8 ratio of 1:5.4. Greater amounts of KC8

decrease the yield of3. At a 1:KC8 ratio of 1:9, only2 was isolated.
The unexpected formation of2 and3 appears to involve the well-

documented hydrogen abstraction from ethereal solvents13 in the
presence of alkali metals.14-16

We also prepared the carbene:borane adduct, R:BH3, 4. The11B
NMR resonances of4 (RBH3), 2 (R(H)2B-B(H)2R), and 3
(R(H)BdB(H)R) are-35.38,-31.62, and+25.30 ppm, respec-
tively. The 11B signal of4 is a quartet (JBH ) 83.38 Hz), while2
displays a singlet with shoulders (w1/2 ) 188 Hz) and3 displays a
broad singlet (w1/2 ) 946 Hz). The1H NMR imidazole resonances
of 4, 2, and3 are 6.31, 6.21, and 6.14 ppm, respectively.

X-ray structural analysis reveals that2 has a center of symmetry
about the (H)2B-B(H)2 core (Figure 1). The hydrides (B-H) in 2,
3, and 4 were located in the difference Fourier map. The B-B
bond distance in2 (1.828(4) Å) compares well to that computed
for the CO-ligated analogue OC(H)2BB(H)2CO (1.819 Å)9c and to
those in an activatedm-terphenyl based diborate (1.83(2) Å)18 as
well as a 2,3-diboratabutadiene dianion (1.859(8) Å).19 However,
the bond distance in2 is longer than those in three-coordinate
diboron compounds (1.682(16) to 1.762(11) Å).17 The boron atoms
in 2 reside in tetrahedral geometries. The N2C3 ring of the NHC
ligand is almost perpendicular to the B-B-C plane with a N(1)-
C(1)-B(1)-B(1A) torsion angle of-89.3°. The B-C bond
distance in2 (1.577(2) Å) is somewhat shorter than that in1
(1.623(7) Å), but is similar to that in4 (1.585(4) Å).

3 crystallizes in the orthorhombic space groupP212121 (No. 19).
Each asymmetric unit contains two independent, and nearly
identical, molecules of3 (Figure 2; only one molecule of3 is
shown). The B-C bond distances, 1.547(15) Å (av), are marginally
shorter than those of1, 2, and4. Moreover, in contrast to2, one
C3N2 carbene ring of3 is nearly coplanar with the B2H2 core (N(1)-
C(1)-B(1)-B(2) torsion angle,-13.8°), while the other is stag-
gered more (N(4)-C(28)-B(2)-B(1) torsion angle,-30.0°). The
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Figure 1. Molecular structure of2 (thermal ellipsoids represent 30%
probability; hydrogen atoms on carbon omitted for clarity). Selected bond
distances (Å) and angles (deg): B(1)-B(1A) 1.828(4), B(1)-C(1) 1.577(2),
B(1)-H(1) 1.155(18), B(1)-H(2) 1.147(19); B(1A)-B(1)-C(1) 107.45(16),
B(1A)-B(1)-H(1) 110.7(9), B(1A)-B(1)-H(2) 110.3(9), C(1)-B(1)-
H(1) 108.9(9), C(1)-B(1)-H(2) 108.1(10), H(1)-B(1)-H(2) 111.3(13).
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three-coordinate boron atoms in3 adopt trigonal planar geometries.
The most notable feature of3, however, is the BdB bond. The
BdB bond distance of 1.560(18) Å (av) in3 is not only
considerably shorter than the B-B distance in2 (1.828(4) Å), but
also shorter than those reported for [Mes2BB(Mes)Ph]2- (1.636-
(11) Å)4 and for [{Ph(Me2N)BB(NMe2)Ph}]2- (1.627 Å (av)),5

which purportedly contained a “strong B-B π-bond”. Furthermore,
the BdB bond distance in3 compares well to those in dianionic
tetra(amino)diborates (1.566(9) to 1.59(1) Å)6 and to the computed
BdB bond lengths for the OC(H)BdB(H)CO ((IV ), L: ) CO)
analogue (1.590 Å)9c and for diborene(2), (III )3 (1.498-1.515 Å).
The computed B-B distance of 1.45 Å reported for OCBBCO, a
compound “with some triple bond character”, is shorter.2,9cNotably,
the B-B bond distance difference of 0.27 Å between2 and3 is
comparable to the corresponding difference (about 0.2 Å) between
ethane and ethene. Likewise, the C-C bond distance difference of
0.1 Å between ethene and ethyne corresponds to the difference
between3 and OCBBCO (0.11 Å).2,9c Thus, the structural details
of 3 are consistent with a BdB double bond.

The nature of3 was investigated by performing B3LYP/6-
311+G** DFT computations20 on the simplified R(H)BdB(H)R
(R ) :C(NHCH)2) model,3a (Figure 3). Both3aand the OC(H)Bd
B(H)CO ((IV ), L: ) CO) analogue9c are planar and haveC2h

symmetry, whereas the corresponding R moieties in3 are twisted
because of the greater steric demands of the very bulky N(aryl)
ligands. The computed B-B bond lengths in3a (1.591 Å) and (IV )
(L: ) CO) (1.590 Å)9c are virtually identical and are close to the
error bound of the corresponding experimental distance of3
(1.561 (18) Å). The B-C length (1.547 (15) Å (av)) of3 also agrees
with the computed value (1.531 Å) for3a. Perhaps due to reduced
steric repulsion between the ligands, the B-B-C bond angle in
3a (120°) is less than the average value in3, 126.7(12)°.

The HOMO of3a (Figure 3) is mainly a B-B π-bonding orbital
involving the overlap of boron 2p orbitals, while the HOMO-1 has
mixed B-B and B-H σ-bonding character. (A localized molecular

orbital (LMO)20 representation of the B-B σ bond is shown in the
Supporting Information). Natural bond orbital (NBO) electron
occupancies of the B-B σ- andπ-bonding orbitals in3a are 1.943
and 1.382, respectively. The Wiberg and NLMO/NPA B-B bond
indices, 1.408 and 1.656, respectively, also document the BdB
double bond character in3a.

The computed boron-boron Wiberg bond indexes along the
OC(H)2B-B(H)2CO (ethane-like), OC(H)BdB(H)CO ((IV ), L: )
CO) (ethene-like), and OCBBCO (ethyne-like) series, 0.870, 1.308,
and 1.953, respectively, are instructive. The 1.0, 2.0, 3.0 unit bond-
order values of the hydrocarbon series are not to be expected for
the corresponding boron-boron analogues owing to the resonance
contributions of Lewis structures. Nevertheless, the single-, double-,
and triple-bond descriptions of boron-boron bonds discussed here
are appropriate.

In summary, we have synthesized and characterized the first
stable neutral diborene and computationally probed the nature of
the novel boron-boron double bond. Related studies on the
chemistry of boron-boron multiple bonds are ongoing.
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Note Added after ASAP Publication. After this paper was
published ASAP September 21, 2007, production errors were fixed
in the graphics showing structures (I )-(IV ) and eq 1. The corrected
version was published ASAP September 25, 2007.
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including the cif files. This material is available free of charge via the
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Figure 2. Molecular structure of3 (thermal ellipsoids represent 30%
probability; hydrogen atoms on carbon omitted for clarity). Selected bond
distances (Å) and angles (deg): B(1)-B(2) 1.561(18), B(1)-C(1) 1.543(15),
B(1)-H(1) 1.14(2), B(2)-C(28) 1.532(15), B(2)-H(2) 1.13(2); B(2)-
B(1)-C(1) 128.3(12), B(2)-B(1)-H(1) 124(4), C(1)-B(1)-H(1) 107(4),
B(1)-B(2)-C(28) 126.1(12), B(1)-B(2)-H(2) 128(4), C(28)-B(2)-H(2)
105(4).

Figure 3. Representation of the HOMO and HOMO-1 orbitals of3a.

C O M M U N I C A T I O N S

J. AM. CHEM. SOC. 9 VOL. 129, NO. 41, 2007 12413


